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Abstract

As shown in previous papers, mathematical simulation can be useful in the

design of drug delivery systems. We present a finite-difference approximation

to the drug mass transfer rate from dissolving cylindrical drug-containing

compacts, consisting of alternating layers of drug and inert material. Results

are compared with a recent analytical solution to the same problem and with

experiment. The two theoretical estimates differ by about 10%, a result of

different implementations of a derivative surface boundary condition. The

finite-difference model is more physically realistic but the analytical solution

is usefully accurate.
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1 Introduction

There are many types of drug delivery system. Aspirin tablets, or com-

pacts, for example, are designed to deliver acetylsalicylic acid to the body.

Controlled release systems deliver drug at a predetermined rate, maximising

the drug’s effectiveness while minimising the risk of overdose (Langer, 1993,

2003). In dissolution controlled systems, the drug release rate is modified

with excipients of known dissolution properties. Excipients are the generally

biologically inert materials that together with the drug(s) form the deliv-

ery system (Aulton, 2002). Compacts often consist of uniform, compressed

mixtures of drug and excipient. Dissolution simulations can give physical in-

sight and reduce the costs of researching new dissolution controlled delivery

systems (Crane et al., 2004a).

Ramtoola and Corrigan (1987) showed that for a specific compact consist-

ing of two components, an acid drug and an acid excipient, dissolving in

a solvent, classical dissolution theory (Higuchi et al., 1965) fails to make

accurate predictions about the drug dissolution rate. The error was at-

tributed to pH changes at the solid-liquid interface, an effect not captured

by Higuchi’s non-interacting component model. Healy and others have in-

vestigated further aspects of dissolution behaviour that standard models do

not include, from compact composition (Healy and Corrigan, 1992) to the

hydrodynamics of the dissolution environment (D’Arcy et al., 2005). Healy

and Corrigan (1996) concluded that large particles of fast-dissolving excipi-

ent increase the drug dissolution rate. Once dissolved, large particles leave

behind large pores on the compact surface, increasing the effective surface

area of drug exposed to the solvent. This suggested an investigation into how

drug and excipient dissolution properties affect the surface area of drug and
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Figure 1: USP type 2 dissolution apparatus. Figure 2: Multi-layer com-
pact.

its delivery rate during dissolution. To this end, recent work has involved

modelling simple one or two component cylindrical compacts, dissolving in a

type 2 USP dissolution test apparatus (United States Pharmacopeial Con-

vention, 2000)(Fig. 1). The two component compacts consist of equally

spaced alternating layers of one drug and one excipient (Fig. 2).

The multi-layer configuration was chosen for reasons including: (i) it is a

simple starting point, with well-defined regions of drug and excipient (Crane

et al., 2004a), (ii) techniques used to model this system may be applied to

uniformly mixed multi-component compacts (PSUDO, 2000). Layered com-

pacts are uncommon in practice, though similar devices have been proposed

as viable delivery systems (e.g. Abdul and Poddar (2004), Qiu et al. (1998)).

Crane et al. (2004b) 2 outlined analytical and numerical predictions for drug

release from a compact consisting entirely of drug (a 1-layer system), both

approaches giving reasonable agreement with the experimental results of
2Results from the fourth framework EU project, PSUDO (2000) (Parallel simulation

of drug release code). Its aim was to demonstrate the usefulness of high performance
computing in drug delivery system design and development.
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Healy et al. (2002). The authors concluded with two recommendations for

building improved models: (i) to incorporate the three dimensional fluid

motion of the USP apparatus, and (ii) to develop the analytical model to

take account of the compact’s finite size and its increasing axial curvature

as it dissolves. Crane et al. (2004a) describe an improved analytical model,

derived using a simpler method and agreeing to within 5% of the previous

analytical result. Importantly, despite neglecting the axial curvature and

finite volume of the compact, this model has a significant advantage in that

it tackles the surface boundary conditions necessary to model multi-layer

compacts. Mass transfer rates computed using this improved model agree

reasonably well with experimental data for 1- , 3- and 5-layer systems (Crane

et al., 2004a).

Although the dissolution test is widely used, high variability in results have

been reported (Qureshi and Shabnam, 2001) and its dynamics are for the

most part not well understood (Baxter et al., 2005). In recent years, com-

putational fluid dynamics simulations (Healy et al., 2002; McCarthy et al.,

2003, 2004; Kukura et al., 2004; Baxter et al., 2005; D’Arcy et al., 2005)

have shown that the flow field in the device is fully three-dimensional and

that small displacements of the compact can lead to significant changes in

the dissolution rate.

We present further considerations about the surface boundary conditions

and describe a numerical approximation to drug dissolution from the curved

surface of single- and multi-layer compacts. We consider, in particular, the 5-

layer derivative boundary condition and begin with a review of the previous

analytical 5-layer model (Crane et al., 2004a). Our aim is to determine the

merits of the semi-analytical and finite-difference models.
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Figure 3: The two-dimensional flat plate approximation.

2 Modelling Compact Dissolution

2.1 Simplifications and Mathematical Description

The advection-diffusion equation, used to model the drug mass transfer from

these compacts, is (Incropera and DeWitt, 2002):

∂c

∂t
= −(~v.~∇)c + D∆c (1)

where c is the concentration of drug, D is its concentration independent

diffusion coefficient and ~v(u, v, w) is the fluid velocity field. We maintain

a high concentration of the drug in the solid ensuring drug saturation con-

centration, cs at the solid-liquid interface (Langer, 1993). If the Schmidt

number, Sc, is large3, the surface curvature may be neglected and the prob-

lem reduces to steady two-dimensional dissolution from a flat plate (Fig. 3)

with x and y defined in Fig. 4. It is then sufficient to replace the axial

velocity profile u by its tangent at the surface since the concentration layer
3The velocity boundary-layer is a thin layer of fluid in the immediate vicinity of a

surface where the velocity gradients normal to the surface are very large (Prandtl, 1928);
it determines the friction on the wall. A concentration boundary-layer also exists that
determines the convection mass transfer rate. Sc is the ratio of the momentum and mass
diffusivities: for laminar flows, the thickness of the concentration boundary-layer is small
compared to the velocity boundary-layer if Sc is large.
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Figure 4: 1-/3-/5-layer configurations with dimensions and coordinate sys-
tem. The drug layers are coloured grey.

is very thin (Schuh, 1953; Schlichting, 1979) so that

u =
τ0

µ
y (2)

where τ0 is the shear stress at the surface and µ is the dynamic viscosity

of the fluid. The freestream fluid velocity past the compact is taken to be

axial and steady (Crane et al., 2004a). Diffusion in the x direction may

be neglected as for sufficiently fast flows the convection term masks the

streamwise diffusion. Surface erosion is assumed to be the primary release

mechanism (Siepmann and Gopferich, 2001); this is supported by the lin-

earity of the release rate data reported by Healy et al. (2002) (Heller, 1987).

With these assumptions and simplifications, Eq. (1) can be written:

u
∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
(3)
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2.2 Boundary Conditions

We are concerned only with the drug mass transfer rate and assume no

interaction between the two components, so the boundary conditions are:

1−Layer 3−Layer 5−Layer

y = 0 0 ≤ x ≤ x1 c = cs c = 0 c = 0

y = 0 x1 ≤ x ≤ x2 − c = cs c = cs

y = 0 x2 ≤ x ≤ x3 − − ∂c

∂y

∣∣∣∣
y=0

= 0

y = 0 x3 ≤ x ≤ x4 − − c = cs

y = 0 x4 ≤ x ≤ x5 − − −
y = Y x ≥ 0 c = 0 c = 0 c = 0

where x1 etc. are defined in Fig. 4.

2.3 Previous Analytical Models

2.3.1 Kestin-Persen Solution (Kestin and Persen, 1962): 1-/3-

layer model

Since Sc is large and the concentration boundary-layer is contained entirely

within the laminar momentum boundary-layer, we can apply the mathemat-

ically equivalent Kestin-Persen (1962) solution to the 1-/3-layer systems.

Using the similarity parameter:

η =
y

√
τ0

µ
[
9D

∫ x

x0

√
τ0

µ
dx

] 1
3

(4)

and noting that
∂c

∂x
=

∂c

∂η
.
∂η

∂x
and so forth, Eq. (2) can be reduced to an

ordinary differential equation whose solution is:
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Figure 5: (a) Inset: the variation of drug content in the solution with x-
position; (a) The concentration curve at x3 is varied (by increasing δc3) until
(b) the areas under the uc curves at x2 and x3 are the same. The amount
of drug in the solution is a function of this area.

C =
Γ
(

1
3 , η3

)

Γ
(

1
3

) (5)

Γ
(

1
3 , η3

)
is the incomplete gamma function (Press et al., 2002). Γ

(
1
3

)
is 2.679

(Chang and Jianming, 1996).

2.3.2 Pohlhausen Solution (Crane et al., 2004a): 5-layer model

For the 5-layer case, Crane et al. (2004a) implement the derivative surface

boundary condition between x2 and x3 by observing that, for a steady state,

the total amount of drug in the solution at x3 must be the same as the total

amount of drug in the solution upstream at x2. They assume, in addition

to the assumptions previously outlined, that the shape of the concentration-

distance curves at x2 and x3 are the same and, importantly, that δc3 , the

concentration boundary-layer thickness at x3, is the only quantity that can

be varied to maintain the mass balance between x2 and x3 (Fig. 5).

These additional assumptions allow the two separate layers of drug to be

treated as one continuous layer and lead to an expression for the total mass

transfer from a 5-layer compact:
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ṁ|level x4
=

[
2πa(0.332U0)

√
U0

ν
csα

]
(2K)

2
3

(
x

3
4
4 − x

3
4
3 + x

3
4
2 − x

3
4
1

) 2
3

(6)

where ṁ has units mgs−1, a is the radius of the compact, ν is the kinematic

viscosity of the solvent, α is a constant equal to
(

1
2 − 4

π2

)
and

K =
Dπν

1
2

2α0.332U
3
2
0

(7)

3 Numerical Method

A rectangular N×M grid is imposed on the region of interest (Fig. 6), i and

j denote the x and y indices respectively. Eq. (2) is linear and parabolic and

can be solved using a marching finite difference scheme. We use the well-

documented Crank-Nicolson implicit scheme, second order accurate in space

and first order accurate in the time-like sense, based on primitive variables

and incorporating no numerical diffusion (Dehghan, 2004). x is the time-like

independent variable in this case while y is the space variable. The scheme

has the advantage of unconditional stability and is evaluated using:

−(ε+2s)ci
j−1+4(1+s)ci

j+(ε−2s)ci
j+1 = (2s+ε)ci−1

j−1+4(1−s)ci−1
j +(2s−ε)ci−1

j+1

(8)

ε =
v

u

∆x

∆y
; s =

D

u

∆x

(∆y)2
(9)

where ∆x and ∆y are the x and y grid spacings and u and v are calculated

at (i− 1, j). The cell size, h =
√

∆x∆y.
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Figure 6: Uniform finite difference grid.

Concentration values at each grid point are calculated using Eq. (8) and the

boundary conditions described. The resulting M−2 simultaneous equations

at every i-position are solved using the tridiagonal matrix algorithm (White,

1991).

Since u and c can be found at each grid point, the drug mass transfer rate

from the compact is then estimated using:

ṁ|level x = 2πa

∫ δc

0
uc dy (10)

solved numerically using

ṁ|ix = 2πa

j=M−1∑

j=0

uix
j cix

j ∆y. (11)

Evaluated at the end of the last drug layer, this expression sums the amount

of dissolved drug passing level x per second.
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3.1 Initial Conditions

For the 1-layer compact, initial concentration values are provided by using

the Kestin-Persen solution (1962) to generate a concentration-distance curve

at x = x0. This is to avoid the singularity inherent in the solution to

the steady-state advection-diffusion equation at x = 0. x0 must be far

enough away from the leading edge to have a reasonably well-developed

drug concentration profile and so ensure that there is enough information to

initialise the finite difference calculation. The rectangular region of interest

for a compact consisting entirely of drug extends from x = x0 to x = X,

the end of the compact. The exact solution is not needed to initialise the 3-

and 5-layer solutions and the computational domain for these configurations

extends from x = 0 to x = X.

3.2 Implementing the Neumann Boundary Condition

The derivative boundary condition is implemented as a forward-difference

second order approximation, namely (Gavaghan, 1997):

∂c

∂y
=
−c2 + 4c1 − 3c0

2∆y
= 0 (12)

⇒ c0 =
4c1 − c2

3
(13)

where c0 is the unknown concentration value at the surface at grid position i,

while c1 and c2 are the concentration values at ∆y and 2∆y from the surface

respectively, also calculated at i. The error associated with this boundary

condition, based on a Taylor series expansion, is of the order of at most
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Figure 7: (a) Linear convergence of the 5-layer solution with decreasing cell
size; (b) Concentration-distance curve normal to the compact surface at the
start of the inert layer, x = x2 = 0.34; (c) At the end of the inert region, at
x = x3 = 0.51. The finite difference curve is the more physically realistic;
(d) At the end of the second drug layer, x = x4 = 0.68.

(∆y)2 (Britz, 1987).

4 Results and Discussion

The drug component was taken to be benzoic acid with a diffusion coefficient

of 1.236× 10−5 cm2/s and a solubility in the solvent (0.1N HCL at 37o) of

4.55 mg/cm3 (Healy et al., 2002). The viscosity of the fluid was assumed

to be that of the solvent, 7.867× 10−5 cm2/s. The axial freestream velocity

past the compact was set as 1.83 cm/s (Crane et al., 2004b). The compacts

were 0.85 cm in height and of radius a = 0.65 cm.

The good agreement between the finite difference method and the other
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1-Layer 3-Layer 5-Layer
Experimental (Healy et al., 2002) 1.46 (-) 0.64 (-) 0.73 (-)
Crane et al. (2004b) 1.17 (19.8) - -
Kestin and Persen (1962) 1.13 (22.9) 0.50 (21.6) -
Pohlhausen (Crane et al., 2004a) 1.13 (23.0) 0.51 (21.6) 0.58 (20.9)
Finite Difference 1.13 (22.9) 0.51 (21.6) 0.64 (12.9)

Table 1: Experimental and theoretical values for the mass transfer rate of
benzoic acid from 1/3/5-Layer compacts dissolving in a type 2 USP disso-
lution test apparatus, ṁ [mg min−1]. Percentage errors with respect to the
experimental values are listed in brackets (%). The experimental values for
3/5 layer compacts are inferred from figures for salicylic acid in Crane et al.
(2004a).

models4 for 1-/3-layer compacts, suggests that the finite difference scheme

employed is solving Eq. (2) correctly (Table 1). A grid sensitivity analysis

(Celik, 2005) indicated that the 5-layer finite difference model converges as

h → 0 with a discretisation error of 0.02 % (Fig. 7a). tc = βh2 where tc is

the computation time, β is a constant. tch=0.001 = 75s (implemented with

Python on a 2.4 GHz P4, 512 MB RAM).

The cause of the 10.1% difference between the Pohlhausen and finite differ-

ence solutions (Table 2) is illustrated in Figs. 7b - 7d. The drug concentra-

tion profiles and corresponding mass transfer rate estimates generated by

the Pohlhausen and finite difference solutions almost coincide at the end of

the first drug layer, at x = x2 = 0.34 (Fig. 7b). Just before the start of

the second drug layer, at x = x3 = 0.51, the concentration-distance curves

are quite different (Fig. 7c) but the mass transfer rates based on these

curves (calculated using Eq. (8)) are almost the same. Since the same lin-
4Crane et al. (2004b) describe a 1-layer solution with a small correction (3%) for the

curvature of the compact. If this correction term is dropped, the solution coincides with
that of Kestin and Persen.
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1-Layer 3-Layer 5-Layer
Experimental (Healy et al., 2002) 1.00 (29.8) 0.44 (27.5) 0.50 (26.4)
Crane et al. (2004b) 1.00 (4.1) - -
Kestin and Persen (1962) 1.00 (0.1) 0.45 (0.1) -
Pohlhausen (Crane et al., 2004a) 1.00 (-) 0.45 (-) 0.51 (-)
Finite Difference 1.00 (0.1) 0.45 (0.1) 0.57 (10.1)

Table 2: Experimental and theoretical values for the mass transfer rate of
benzoic acid normalised with respect to 1-layer values. Percentage difference
of mass transfer rates with respect to the Pohlhausen values are listed in
brackets (%). The 10.1% discrepancy between the Pohlhausen and finite dif-
ference methods results from the different implementations of the Neumann
boundary condition only.

ear velocity profiles are used in both solutions and we have confidence in

the finite difference scheme, it is the difference in the shape of the concen-

tration profiles at x = x3 = 0.51 that gives rise to the slight difference in

the drug concentration profiles at x = x4 = 0.68 (Fig. 7d) and the dif-

fering mass transfer rates. The shape of the concentration profiles at x3

only depends on how the Neumann boundary condition within the central

layer (x2 ≤ x ≤ x3) is implemented. It follows then that the 10.1% differ-

ence between the Pohlhausen and finite difference estimates can be entirely

attributed to the differing implementations of this boundary condition.

Although the absolute theoretical and experimental mass transfer rate esti-

mates differ (Table 1), if the 3-/5-layer results are presented as fractions of

the associated 1-layer solutions, a much better agreement is evident (Table

2). This suggests that much of the underlying physics has been captured by

the models. Recent hydrodynamic analyses (McCarthy et al., 2004; D’Arcy

et al., 2005) show that for a compact placed centrally in the device the fluid

flows across the curved surface, not along it. One implication of this, cor-

responding with our results, is that the theoretical models will consistently
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underestimate the mass transfer rate.

5 Conclusions

The two theoretical estimates for the drug mass transfer rate from the sur-

face of a 5-layer compact are shown to differ by 10.1%, a fact we attribute

entirely to the different implementations of the derivative surface boundary

condition. Further validation work is necessary but using the finite differ-

ence model as a benchmark solution, the analytical Pohlhausen estimate

is usefully accurate. The assumption of a steady, axial flow is likely to be

the primary reason for the error between the experimental and theoretical

results and future work should correct for this.
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